

Heat Exchanger Simulator Educational

Version 2.0

ISBN 85-901256-1-0

Educational Proposal

Heat exchangers are very common equipment in the chemical industries. Among the several kinds of heat exchangers used in the industry, the shell and tube heat exchanger is special due to its versatility, easiness of operation and maintenance and for its high capacity of processing. However, the calculations required for its design is very hard requiring an enormous number of equation and correlation.

Several calculation methods exist to design shell and tube heat exchangers. Among them, Kern, Tinker and Bell-Delaware methods are the most known methods in the open literature. Teaching heat exchangers is considered very complicated due to the great time required to teach the methods. The time needed to perform heat exchanger design calculations, by hand, is high and therefore the students do a small number of exercises. And not always these exercises show the application of the heat exchanger in the industry.

The software HES (Heat Exchanger Simulator) was developed in order to complement the teaching of heat exchangers, bringing to the student a knowledge of the applications of these exchangers and cases where the calculation of these equipment are required in the industry.

Exercises

Shell and Tube Heat Exchangers

Cosmetic Industry [Exercise 1]

In this exercise the student must search for the best operational condition for a given chemical process, respecting the pressure drop limits of the equipment. The initial data presented to the student leads to a pressure drop that is bigger than the recommended for the equipment (10 psi).

Problem		
Heating of Water with Thermal heat transf	er fluid	
Water (Tubes)	29.9.top/h	
now rate	28.8 LON/ II 95.0C	
outlet temperature	40 °C	
Thermal 100G (Shell) inlet temperature	150 °C	
unknown flow rate and outlet temperature		
Requirements maximum pressure drop	10 psi	

The student should change only the process conditions of the heat transfer fluid. The configuration of the heat exchanger should not be changed, since the heat exchanger in the exercise is an existing one.

Expected Results	
Water	
should not have it operational conditi	ons changed
Thermal 100G	
flow rate	3.1 kg/s
outlet temperature	87.3 ^o C
shell pressure drop	9.8 psi

Obs: Several students will try to change the number of baffles in the exchanger, what would not be an economical alternative to do with an existing heat exchanger.

✤ Vegetal Oil [Exercise 2]

In this exercise the student will have to design a heat exchanger that will be used in the production of vegetal oil. It will be also required to choose a heat transfer fluid.

Problem	
Heating of Vegetal Oil using Therr	mal heat transfer fluid
Vegetal Oil (Shell)	
flow rate	150 ton/h
inlet temperature	25 °C
outlet temperature	80 °C
Thermal (Tubes) inlet temperature unknown flow rate and outlet	300 °C temperature
Requirements	
tube length	12 ft
fouling resistance	0.002 h.ft ² .ºF/BTU
maximum pressure drop	10 psi

The exercise can be considered correct if the considerations done for the design of the heat exchanger is coherent and if the operational parameters such as the pressure drop and the fouling resistance be near to the recommended ones.

Thermal 159 flow rate 161.5 ton/h
flow rate 161.5 ton/h
Iniet temperature 300 °C
outlet temperature 250 °C
Heat Exchanger
shell diameter 19.25 in
tube external diameter 0.75 in
tube pitch 1.0 in
number of tubes 256
tube length 12 ft
number of passes in the tubes 2
number of baffles 23
baffle cut 0.25
Other Results
fouling resistance 0.0081 h.ft ² .ºF/BTU
shell pressure drop 9.3 psi
tube pressure drop 3.3 psi

✤ Heat Transfer Fluid [Exercise 3]

In this exercise the student should choose the best heat transfer fluid for a given process, among a list of heat transfer fluids.

Problem		
Cooling of Acetone with Heat Transfer Fluid or Water		
Acetone		
flow rate	650 ton/h	
inlet temperature	100 °C	
outlet temperature	80 °C	
-		
Heat Transfer Fluids		
available fluids	Thermal 155, 120TX, 100N, 166, Water	
inlet temperature	30 °C	
outlet temperature	60 °C	
-		
Requirements		
fouling resistance	0.005 h.ft ² .ºF/BTU	
maximum pressure drop	10 psi	

Testing the fluids, it will be observed that the fluids Thermal 155 and 120TX could be used. The fluids Thermal 100N and 166 exceeds the maximum pressure drop and the Water presents a fouling resistance higher that the maximum required for the process.

Expected Results	
Thermal 155 – best choice	
flow rate	366.4 ton/h
fouling resistance	0.0038 h.ft ² .ºF/BTU
shell pressure drop	8.3 psi
Thermal 120TX	
flow rate	426.5 ton/h
fouling resistance	0.0049 h.ft ² .ºF/BTU
shell pressure drop	8.6 psi
Thermal 100N	
flow rate	376.8 ton/h
fouling resistance	0.0006 h.ft ² .ºF/BTU
shell pressure drop	13.9 psi
Thermal 166	
flow rate	530.8 ton/h
fouling resistance	0.0043 h.ft ² .ºF/BTU
shell pressure drop	14.5 psi
* *	-

Water	
flow rate	176.4 ton/h
fouling resistance	0.0063 h.ft ² .ºF/BTU
shell pressure drop	1.5 psi

✤ Liquid Wax Process [Exercise 4]

In this exercise the student should adjust the flow rate and outlet temperature of the heat transfer fluid in order to optimize the process.

Problem		
Heating of Triethylamine solution with Thermal 159		
Triethylamine load a reactor with 100 m ³ of triethylamine in 30 minutes inlet temperature 25 °C outlet temperature 85 °C		
Thermal 159 flow rate inlet temperature	unknown – should be determined 200 °C	
outlet temperature	unknown – should be set	
What is the minimum loading time of the reactor? Knowing that the main pumps support up to 25 psi		
Knowing that the auxiliary p	umps support up to 10 psi	

Expected Results

Operational Conditions for Reactor Loading Tim	e of 30 minutes
Thermal 159 (Shell)	
flow rate	456.6 ton/h
inlet temperature	200 °C
outlet temperature	150 °C
Heat Exchanger	
tube side pressure drop	19.1 psi
shell side pressure drop	17.1 psi
fouling resistance	0.00056 h.ft ² .ºF/BTU
Operational Conditions for Maximum Pressure I Thermal 159 flow rate Triethylamine flow rate loading time	Drop of 25 psi 560 ton/h 230 ton/h 26 min

Operational Conditions for Maximu	m Pressure Drop of 10 psi
Thermal 159 flow rate	350 ton/h
Triethylamine flow rate	145 ton/h
loading time	41 min

Obs: loading time and flow rate may change depending on the outlet temperature of Thermal 159 that is set.

Caustic Soda Process [Exercise 5]

In this exercise the student should design a heat exchanger using the heat provided by a stream of a given process. The selection of the heat exchanger is free from any restriction on the configuration of the exchanger. Therefore this is the most complex exercise for the student.

Problem		
Heating of Heat transfer fluid with Steam		
Thermal 155		
flow rate	600 ton/h	
inlet temperature	145 °C	
outlet temperature	150 °C	
Steam		
inlet temperature	450 °C	
Requirement		
fouling resistance	0.02 h.ft ² .ºF/BTU	
maximum pressure drop	10 psi	

The exercise can be considered correct if the considerations done for the design of the heat exchanger is coherent and if the operational parameters such as the pressure drop and the fouling resistance be near to the recommended ones.

The exercise can have multiple answers depending on the chosen tube length, tube diameter and number of passes in the tubes.

Expected Results		
Steam (Shell)		
flow rate	1.95 ton/h	
inlet temperature	450 °C	
outlet temperature	300 °C	
Heat Exchanger		
shell diameter	31 in	
tube external diameter	0.75 in	
tube pitch	0.9375 in	

J	number of tubes	766
t	tube length	8 ft
]	number of passes in the tubes	4
1	number of baffles	6
1	baffle cut	0.25
Other	r Results	
f	fouling resistance	0.054 h.ft ² .ºF/BTU
5	shell side pressure drop	8.6 psi
t	tube side pressure drop	5.1 psi

Obs: It should be observed that only the steam sensible heat should be used, not been allowed the use of the steam latent heat (phase change). Therefore it is desirable that the outlet temperature of the steam be higher than 290°C.

Double Tube Heat Exchanger

✤ Ethanol [Exercise 1]

In this exercise the student should design a double tube heat exchanger, operating in series, for a process that has to cool down ethanol with water. The student should design the best heat exchanger and the kind of flow (cocurrent and countercurrent).

Problem	
Cooling of Ethanol with Water	
Ethanol (Tube) flow rate	3.0 ton/h
inlet temperature	70 °C
outlet temperature	30 °C
Water (Shell)	
inlet temperature	23 °C
outlet temperature	27 °C
flow rate not set	
Requirements	
maximum velocity	2.5 m/s
fouling resistance	0.005 ft ² .h.ºF/BTU
hairpin length	4 ft

The exercise can have multiple answers depending on the considerations that have been made. A good result is shown below.

Expected Result	
Heat Exchanger	
shell diameter	3.5 in
tube diameter	1.9 in
number of hairpins	6 – countercurrent flow
-	8 – cocurrent flow

Cocoa Fermentation [Exercise 2]

In this exercise the student should design a double tube heat exchanger to heat up a heat transfer fluid used to maintain the temperature of a reactor at constant temperature. The student should also study how the water flow rate should vary throughout the year, knowing that the fouling resistance increases linearly with time.

Problem							
Heating of Thermal 166 using	Heating of Thermal 166 using Water						
Thermal 166 (Shell)							
flow rate	100 ton/h						
inlet temperature	45 °C						
outlet temperature	47 °C						
Water (Tube)							
inlet temperature	97 °C						
outlet temperature	60 °C						
flow rate not set							
Requirements							
exchanger operating in se	eries / countercurrent flow						
fouling resistance	0.01 ft ² .h.ºF/BTU						
hairpin length	8 ft						

Expected Result	
Water	
flow rate	1.8 ton/h
Exchanger	
shell diameter	4.5 in
tube diameter	1.0 in
number of hairpins	3
shell velocity (Thermal 166)	3.8 m/s
tube velocity (Water)	1.8 m/s
exchange area	158 ft ²
overall heat transfer coef. (clean)	92.7 BTU/ft ² .h.ºF

Titanium Dioxide Process [Exercise 3]

hairpin length

tube velocity

exchange area

number of hairpins shell velocity

shell pressure drop

tube pressure drop

In this exercise the student should design a double tube heat exchanger to heat up sulfuric acid using a heat transfer fluid. The design should be based on operational conditions only, been the only requirements the maximum pressure drop and the fouling resistance.

Problem	
Heating of Sulfuric Acid 98% with	Thermal 100N
Sulfuric Acid 98% (Shell)	67 ton/h
inlet temperature	25 °C
outlet temperature	120 °C
outiet temperature	120 0
Thermal 100N (Tube)	
inlet temperature	360 °C
outlet temperature	335 °C
flow rate not set	
Requirements	
fouling resistance	0.01 ft ² .h.ºF/BTU
maximum pressure drop	10 psi
Expected Result	
Thermal 100N	
flow rate	112.4 ton/h
Exchanger	
flow	parallel / countercurrent
shell diameter	6.5 in
tube diameter	3.5 in
hairpin length	8 ft
number of hairpins	3
shell velocity	0.9 m/s
tube velocity	3.2 m/s
exchange area	552 ft ²
shell pressure drop	0.9 psi
tube pressure drop	1.8 psi

16 ft 2

0.9 m/s

4.9 m/s

1473 ft²

0.5 psi

1.8 psi

Pinch Technology

Benzene Process [Exercise 1]

In this exercise the energy integration of a benzene production process should be analyzed. The student should study the effect of the minimum approach temperature on the required hot and cold utilities and on the heat exchanged between the streams.

Initial System					
Streams					
	Inlet	Outlet	Flow	Ср	
	Temp	Temp	Rate	-	
	[ºĈ]	[ºĈ]	[kg/h]	[J/g.K]	
Diphenyl	250	120	526	1.9	
Benz + Tol	200	100	1740	2.3	
H_2	90	150	205	14.6	
Toluene	130	190	2609	2.3	

Expected Results

Energy Integration – Delta T = 10° C	135 ℃
required hot utility	70000 kI/h
required cold utility	60000 kJ/h
heat exchanged between streams	940000 kI/h
neut exchanged between streams	
Energy Integration – Delta T = 15° C	
pinch temperature	137.5 °C
required hot utility	95000 kJ/h
required cold utility	85000 kJ/h
heat exchanged between streams	890000 kJ/h
Energy Integration – Delta T = 20° C	
pinch temperature	140.0 °C
required hot utility	120000 kJ/h
required cold utility	110000 kJ/h
heat exchanged between streams	840000 kJ/h

The results show that the pinch temperature, as well as the quantity of hot and cold utilities required increase with the increase of the minimum approach temperature.

Nitric Acid Process [Exercise 2]

In this exercise the energy integration of a nitric acid production process should be studied. Initially the energy conservation was done between 5 streams, but three more streams should be added to the energy integration system. The student should study the viability of the inclusion of these new streams, and should also analyze the quantity of energy that can be saved with the integration.

Initial System						
Streams						
	Inlet	Outlet	Flow	Ср		
	Temp	Temp	Rate			
	[°C]	[°C]	[ton/h]	[J/g.K]		
Air	20	250	16	1.05		
NO	350	150	17	1.13		
NO_2	150	45	14	1.25		
NH_3	20	120	4	2.30		
Effluent	50	100	1	1.13		
Energy Integration						
pinch temperature			20°C	/h		
required cold utility			00.0 KJ 970 1 kJ	/ 11 /h		
here and here to d here an attraction			679.1 KJ	/ 11 1 /h		
neat exchange	9040.3 K	J/ II				

System after the Inclusion of the 3 new Streams

Streams					
	Inlet	Outlet	Flow	Ср	
	Temp	Temp	Rate		
	[ºĈ]	[ºĈ]	[ton/h]	[J/g.K]	
Air	20	250	16	Ĭ.05	
NO	350	150	17	1.13	
NO_2	150	45	14	1.25	
$\tilde{\mathrm{NH}_{3}}$	20	120	4	2.30	
Effluent	50	100	1	1.13	
Air 2	20	130	10	1.05	
HNO_3	50	30	20	2.30	
NO recycled	50	100	1	1.13	
Energy Integratio	n				
pinch temperature			45 °C		
required hot utility			845.9 kJ	/h	
required cold utility			745.1 kJ/h		
heat exchange	n streams	11244.3	kJ/h		

The new streams when not integrated to the energy conservation system, needed 1168 kJ/h of cold utility and 1211.5 kJ/h of hot utility. Therefore the system as a hole needed 1504.3

kJ/h of cold utility and 1547.8 kJ/h of hot utility. The student should note that the calculation of these quantities is needed in order not to incur in error.

With the three new streams, the energy integration of the plant requires 845.9 kJ/h of hot utility and 745.1 kJ/h of cold utility, what means a reduction of 45% in hot utility requirement and of 50% of cold utility requirement.

Information

Required System

PC-486 or higher (Pentium is recommended)8 Mb Ram (16 Mb recommended)Windows 95 or higherCD-Rom (for installation)

Support

Contact

EFFTech Engineering Software e-mail: efftech@yahoo.com http://efftech.tripod.com