Educational Proposal

Environmental protection has required the creation of the ISO14000. This certification is very important socially and economically to several industries, since it make their products more acceptable by the society.

The reduction of effluents emission can be done employing clean technologies and pollution control equipment. So, it is very important to all engineers to be prepared to deal with the equipments used in effluent treatment and pollution control.

This software was developed in order to help in teaching and training with these unit operations and its applications

AmbientPro Educational

Version 1.1

ISBN 85-901256-1-0

AmbientPro

Exercises

Cyclone

Detergent

In this exercise a cyclone should be designed in order to remove fine particles of detergent from an air stream that exists a spray-dryer.

Particles of Detergent	
density	2100 kg/m ³
particle size distribution	$X = 1 - \exp\left[-\left(\frac{D}{49.5}\right)^{1.5}\right]$
Air	
temperature	292 °C
pressure	3.4 atm
flow rate	308 m ³ /h
Requirements	
Global Efficiency	90%

Two cyclonesshould be designed: Lapple and Stairmand types

Expected Results

Lapple Cyclone		
number of cyclones in parallel	8	
air flow rate	38.5 m³/h	
diameter	6.6 cm	
inlet velocity	19.37 m/s	
cut diameter	5.35 µm	
Stairmand Cyclone		
number of cyclones in parallel	1	
air flow rate	308 m³/h	
diameter	23.3 cm	
inlet velocity	15.77 m/s	
cut diameter	5.35 µm	

Polyethylene

In this exercise a cyclone should be designed to recover fine particles of catalyst from a gasstream that exists a fluidized bed reactor used in polyethylene production.

Particles of Catalyst	
density	2850 kg/m ³
particle size distribution	2850 kg/m ³ X = 1 - exp $\left[-\left(\frac{D}{45.0}\right)^{1.2} \right]$
Gas	
temperature	60 ℃
pressure	25 atm
flow rate	2125 m ³ /h
Requirements	
Global Efficiency	98%

Two cyclonesshould be designed: Lapple and Stairmand types

Lapple Cyclone		
number of cyclones in parallel	135	
gas flow rate	19.7 m ³ /h	
diameter	4.2 cm	
inlet velocity	15.7 m/s	
cut diameter	0.99 µm	
Stairmand Cyclone		
number of cyclones in parallel	3	
gas flow rate	708.3 m ³ /h	
diameter	26.3 cm	
inlet velocity	28.5 m/s	
cut diameter	0.99 µm	

The Stairmand cyclone is recommend for the process, since the Lapple set containing 135 cyclones would not be viable for the process.

Sugar Cane

air flow rate

inlet velocity cut diameter

air flow rate (total - all cyclones)

In this exercise, the cyclones are used to remove particles of ash from an air stream that exits the furnace that bum cane sugar bagasse. The performance of the cyclones should be analyzed and the minimum and maximum processing capacity of 5 Lapple cyclones should be found.

Particle of Ashes	
density	1850 kg/m ³
particle size distribution	unknown
Air	
temperature	300 ℃
pressure	1.0 atm
flow rate	unknown
Cyclone	
configuration	Lapple
number of cyclones in parallel	5
diameter	30 cm
Requirements	
removal of particles greater than 20	μm with 90% of efficiency
1 0 0 0 0 0	· · · · · · · · · · · · · · · · · · ·
Expected Result	

640 m³/h

3200 m³/h 15.8 m/s

13.5 µm

AmbientPro

Petrochemical

In this exercise a cyclone should be designed to remove particles of ash from a gas stream that exists a coke reactor.

Particles of Ash	
density	2300 kg/m ³
particle size distribution	$X = 1 - \exp\left[-\left(\frac{D}{20.0}\right)^{1.4}\right]$
Carbon Dioxide	
temperature	250 ℃
pressure	2.0 atm
flow rate	100 m ³ /h
Cyclone	
configuration	Lapple
Requirements	
removal of particles greater that	n 40 μm with 90% of efficiency
Expected Results	
Lapple Cyclone	
number of cyclones in parallel	1
diameter	32.0 cm
inlet velocity	2.2 m/s
cut diameter	13.3 µm

Fertilizer

In this exercise the cyclones are used to remove particles of fertilizer from an air stream that is vacuumed from the factory. The performance of the cyclones should be analyzed and the minimum and maximum processing capacity of a set of 2 Stairmand cyclones should be found.

3100 kg/m ³
$X = 1 - \exp\left[-\left(\frac{D}{108.0}\right)^{1.5}\right]$
25 ℃
1.0 atm
unknown
3% (volume)
Stairmand
2
20 cm
eased to the atmosphere
80 μ g/m ³ de ar
2450 m³/h
4900 m ³ /h

AmbientPro

Hydrocyclones

✤ Manganese

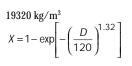
In this exercise the maximum processing capacity of a hydrocyclone should be found. The hydrocyclone is used in the removal of particles of clay from an aqueous mixture of crushed rock (manganese + clay).

Problem	
Particles of Manganese	
density	2700 kg/m ³
particle size distribution	$X = 1 - \exp\left[-\left(\frac{D}{25}\right)^{1.5}\right]$
Particles of Clay	
density	2100 kg/m^3
particle size distribution	2100 kg/m ³ X = 1 - exp $\left[-\left(\frac{D}{2.7}\right)^{1.35} \right]$
Aqueous Solution	
temperature	25 ℃
flow rate	unknown
fraction of solids	150 g/L Manganese
	45 g/L Clay
Hydrocyclone configuration diameter Requirement	Rietema 7 cm
maximum pressure drop	4 atm
Expected Results Hydrocyclone flow rate	11.7 m ³ /h
Manganese	
removal efficiency	51.8 %
recovered manganese (underflow)	77.8 g/L fed
lost manganese (overflow)	72.2 g/L fed
Clay	
removal efficiency	14.5 %
remaining clay (underflow)	6.5 g/L fed
removed clay (overflow)	38.5 g/L fed

AmbientPro

8

AmbientPro


Gold

In this exercise a hydrocyclone should be designed to recover 98% of the gold particles present in an aqueous mixture of crushed rock containing gold, rock and clay.

Problem

Particles of Gold density

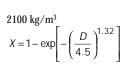
particle size distribution

2700 kg/m³

25 ℃ unknown 5% (volume)

1%

55%


remaining

Particles of Rock density

particle size distribution

Particle of Clay

density

 $X = 1 - \exp\left[-\left(\frac{D}{120}\right)^{1.32}\right]$

particle size distribution

Aqueous Solution

temperature	
flow rate	
solid concentration	

Brittle

Gold Rock Clay

Hydrocyclone design Rietema and Bradley Requirements maximum pressure drop 2.5 atm

Rietema Hydrocyclone	
flow rate	15.3 m³/h
diameter	9.0 cm
Gold	
removal efficiency	98.0 %
cut diameter	4.9 µm
gold recovered	135 kg/h (11.2 %)
Rock	
removal efficiency	89.0 %
remaining rock	945 kg/h (78.6 %)
Clay	
removal efficiency	18.5 %
remaining clay	122 kg/h (10.1 %)

Expected Results – Bradley Hydrocyclone

Bradley Hydrocyclone	
flow rate	14.3 m ³ /h
diameter	13.7 cm
Gold	
removal efficiency	98.0 %
cut diameter	4.9 µm
gold recovered	135 kg/h (10.4 %)
Rock	
removal efficiency	90.7 %
remaining rock	963 kg/h (73.9 %)
Clay	
removal efficiency	31.1 %
remaining clay	205 kg/h (15.7 %)

Water Purification

In this exercise a hydrocyclone should be designed to remove micro particles from water with an efficiency of 90%. The number of hydrocyclones needed to process a total of 100 m³/h of water should also be determined.

Problem

Suspended Particles	
density	1700 kg/m ³
particle size distribution	$X = 1 - \exp\left[-\left(\frac{D}{12}\right)^{1.5}\right]$
Water	
temperature	20 ℃
flow rate	100 m ³ /h (total)
fraction of solids	0.1%
Hydrocyclone	
configuration	Bradley
diameter	unknown
number of hydrocyclones	to be calculated
Requirement	
maximum pressure drop	1 atm
Expected Results	
Hydrocyclone	
flow rate	0.4 m ³ /h
1	11 mm
diameter	
diameter Set of Hydrocyclones	

Separation Chamber

* Glass Spheres

In this exercise the student should verify the performance of a separation chamber should be analyzed and the particle size distribution of each of its 3 chambers should be found.

Glass Spheres	
density	2460 kg/m^3
sphericity	1.0
Air	
temperature	20 °C
pre ssure	1 atm
flow rate	10800 m³/h
Separation Chamber	
height	0.5 m
width	3.0 m
total length	6.0 m
chamber lengths	2.0 m
	'each chamber m flow rate in order to retain particles bigge
which would be the maximu than 50 µm Expected Results	
which would be the maximu than 50 µm Expected Results	um flow rate in order to retain particles bigge
which would be the maximu than 50 µm Expected Results	
which would be the maximu than 50 µm Expected Results Separation Chamber velocity	um flow rate in order to retain particles bigge
which would be the maximu than 50 µm Expected Results Separation Chamber velocity	um flow rate in order to retain particles bigge
which would be the maximu than 50 µm Expected Results Separation Chamber velocity Particle Size Distribution	um flow rate in order to retain particles bigge 2 m/s
which would be the maximu than 50 µm Expected Results Separation Chamber velocity Particle Size Distribution chamber 1 (0 to 2 m)	am flow rate in order to retain particles bigge 2 m/s > 231 μm
which would be the maximu than 50 µm Expected Results Separation Chamber velocity Particle Size Distribution chamber 1 (0 to 2 m) chamber 2 (2 to 4 m)	2 m/s 2 m/s > 231 μm > 166 μm > 130 μm
which would be the maximu than 50 µm Expected Results Separation Chamber velocity Particle Size Distribution chamber 1 (0 to 2 m) chamber 2 (2 to 4 m) chamber 3 (4 to 6 m)	2 m/s 2 m/s > 231 μm > 166 μm > 130 μm
which would be the maximu than 50 µm Expected Results Separation Chamber velocity Particle Size Distribution chamber 1 (0 to 2 m) chamber 2 (2 to 4 m) chamber 3 (4 to 6 m) Maximum Flow Rate to Retain	2 m/s 2 m/s > 231 μm > 166 μm > 130 μm Particles Bigger than 50 mm
which would be the maximu than 50 µm <u>Expected Results</u> Separation Chamber velocity Particle Size Distribution chamber 1 (0 to 2 m) chamber 2 (2 to 4 m) chamber 3 (4 to 6 m) Maximum Flow Rate to Retain flow rate	2 m/s 2 m/s > 231 μm > 166 μm > 130 μm n Particles Bigger than 50 mm 1044 m ³ /h
which would be the maximu than 50 µm Expected Results Separation Chamber velocity Particle Size Distribution chamber 1 (0 to 2 m) chamber 2 (2 to 4 m) chamber 3 (4 to 6 m) Maximum Flow Rate to Retain flow rate velocity	2 m/s 2 m/s > 231 μm > 166 μm > 130 μm n Particles Bigger than 50 mm 1044 m ³ /h 0.29 m/s

* Air Purification

In this exercise a separation chamber should be designed in order to process 5000 m³/h of air containing suspended particles (particles are bigger than 60 μ m) with an efficiency of 100%.

Problem		
Suspended Particles		
density	3200 kg/m^3	
sphericity	0.65	
smaller particle	60 µm	
Air		
temperature	30 ℃	
pressure	1 atm	
flow rate	5000 m³/h	
Separation Chamber		
height, width and length	design	

This is an exercise with no unique solution. Several solutions can be obtained

depending of the sectional area and height chosen.

Result 1		
dimensions	18.5 x 2.0 x 0.5	
velocity	1.39 m/s	
Result 2		
dimensions	9.2 x 4.0 x 0.5	
velocity	0.695 m/s	
Result 3		
dimensions	9.2 x 4.0 x 0.25	
velocity	1.39 m/s	
Result 4		
dimensions	9.2 x 4.0 x 0.125	
velocity	2.78 m/s	

Tickener

Wastewater

In this exercise, a thickener should be designed to treat wastewater, based on the result of a batch flux test. A spreadsheet or chart should be made to show how the changes in the feed flow rate affects the pumping rate and the underflow solids concentration.

Problem			
Operating Conditions			
feed flow rate	177600 kg/h		
feed solids concentration	ation 5 kg/m^3		
density	1000 kg/m ³		
Expected Results			
Settling Velocity Function			
a	-0.0142		
b	0.37		
Area	191.4 m ²		
4000	260		
/			
ह -			
Pumping Rate (kg/h)	·0 250 -		
3000			
50 .3000			
lun l	8 240 -		
	lerfi lerfi		
	Underflow Concentration [kg/m3]		
2000			
2000	-		

Metallurgic Industry

In this exercise, a thickener should be designed to treat the effluent of a metallurgic industry, based on the result of a batch flux test. The performance of the system when using a pump of 13 m³/h should be analyzed for different feed flow rates

Problem

Operating Conditions	
feed flow rate	120000 kg/h
feed solids concentration	200 kg/m^3
density	1000 kg/m ³

Pump of 13 m³/h

How is the	performance	of the s	system for a	feed flow	rate of 150000 k	.g∕h
How is the	performance	of the s	ystem for a	feed flow	rate of 100000 k	.g∕h

Expected Results

Settling Velocity Function	
а	-0.0018
b	0.6237
Area	365.4 m ²

Pump of 13 m³/h How is the performance of the system for a feed flow rate of 150000 kg/h

- underflow flow rate	1350 kg/h
- effluent flow rate	0 kg/h
How is the performance of the system	n for a feed flow rate of 100000 kg/h
- underflow flow rate	1100 kg/h
- effluent flow rate	120 kg/h

Pulp and Paper

In this exercise, the performance of a thickener used to treat the effluent of a pulp and paper should be analyzed. The system has a pump of 0.6 m^3/h , and the maximum solids concentration in the effluent, according to the local laws is 0.4 kg/m³.

The allowed maximum feed solids concentration that still maintain the effluent solids concentration lower than 0.4 kg/m³ should be found. In a second step the maximum feed flow rate that maintains the effluent solids concentration lower than 0.4 kg/m³, when the feed solids concentration is 1.1 kg/m³, should be found

Operating Conditions		
feed flow rate	50000 kg/h	
feed solids concentration	0.8 kg/m^3	
density	1000 kg/m ³	
Settling Velocity Function		
а	-0.045	
b	0.08	
Area	53.6 m ²	
Pump	$0.6 \text{ m}^3/\text{h}$	

Expected Results

What is the maximum feed solids concentration for a feed flow rate of 5000 kg/h ?				
- feed solids concentration	0.98 kg/m ³			
What is the maximum feed flow rate kg/m^{3} ?	for a feed solids concentration of 1.1			
-feed flow rate 42500 kg/h				

16

Petrochemical Industry

In this exercise, the performance of a thickener used to treat the effluent of a petrochemical industry should be analyzed. The system processes 100000 kg/h of effluent containing 30 kg/m³ of solids

It should be decided if the effluent is to be diluted and split into 1 to 6 thickeners (120 m^2 each).

Problem

Operating Conditions		
feed flow rate	100000 kg/h	
feed solids concentration	30 kg/m^{3}	
density	1000 kg/m ³	
Settling Velocity Function		
а	-0.008	
b	0.25	
Area	120 m ²	
Dilution	1:1, 1:2, 1:5	

Expected Result

Dilution	Feed Solids	Underflow	Underflow	Underflow
	Conc.	Conc.	Flow Rate	Total Flow
	[kg/m ³]	[kg/m ³]	[kg/h]	Rate
	- 0 -	- 0 -		[kg/h]
	30	301	9959	9959
1:1	15	361	4153	8306
1:2	10	393	2542	7626
1:5	5	446	1121	6726

The dilution of the effluent can be economically viable since the underflow flow rate that needs to be processed is 6726 kg/h using 6 thickeners while 9959 kg/h should be processed with one thickener.

Dust Collector

Textile Industry

In this exercise, a dust collector should be selected to filter 6200 m 3 /h of air. A list of 5 dust collectors is given.

Proble	em			
Operating Conditions air flow rate		6200 m³/h		
Dust C	ollectors List			
1	0.6 x 0.7 m	with 9 bags		
2	0.7 x 0.8 m	with 9 bags		
3	0.9 x 1.1 m	with 16 bags		
4	1.2 x 1.5 m	with 36 bags		
5	1.5 x 1.5 m	with 64 bags		
valves			5	
diap	hragm		19.0 mm	
blov	v-pipe		6.4 mm	
bagsdiameter			0.114 m	

Expected Results

Dust Collector	Maximum Flow Rate	Can Velocity
	[m ³ /h]	[m/h]
1	1300	3961
2	1300	2776
3	2310	2795
4	5198	3629
5	6467	4069

Analysis

Dust collectors 1 and 5 exceed the recommended can velocity for the system (3655 m/h)

Viable sets of dust collectors that is capable to filter 6200 m³/h are:

1 Dust collector 5 + 1 Dust collector 1

7 Dust collector 1

* Sandblast

In this exercise, the performance of a dust collector should be analyzed to determine how many bags should be closed so the equipment will be within the recommended can velocity for the system.

Problem

Filter		
Dimension	1.016 x 1.219 m	
valves	5	
bags	35	
diaphragm	19.0 mm	
blow-pipe	6.4 mm	
bags diameter	0.114 m	
Recommended Can Velocity		
	6403 m³/h	
	0403 111 / 11	
Expected Results		
Analysis		

The operation should be done with 29 bags. The flow rate should be reduced from 6497 m³/h (35 bags) to 6403 m³/h (29 bags)

Information

Required System

Pentium or higher 16 Mb R am Windows 95 or higher C D-R om (for installation)

Support

Contact

EFFTech Engineering Software e-mail: efftech@efftech.eng.br http://www.efftech.eng.br